St George Girls High School

Trial Higher School Certificate Examination

2010

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Begin each question on a new booklet
- Write your student number on each page
- All necessary working must be shown.
- Diagrams are not to scale.
- Board-approved calculators may be used.
- The mark allocated for each question is listed at the side of the question.

Total Marks - 120

- Attempt ALL questions.
- All questions are of equal value.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Question 1 – (12 marks)

Marks

a) Given
$$g(x) = \begin{cases} 1 - x^2 & x \le 2 \\ 2^x & x > 2 \end{cases}$$
 evaluate $g(3) + g(2)$

2

b) Factorise fully
$$9x^3 - 9$$

2

c) Convert 108° to radians giving your answer in terms of π .

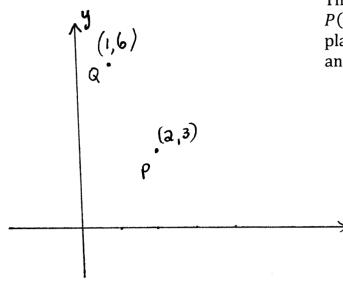
2

d) Solve
$$\frac{x-5}{3} - \frac{x+1}{4} = 5$$

2

e) Solve and graph
$$|5x - 3| < 7$$

2


f) Expand and simplify
$$(\sqrt{2} + \sqrt{6})^2$$

Question 2 – (12 marks)		Marks
a)	Differentiate	
	(i) $(1-5x)^5$	2
	(ii) $3x e^{3x}$	2
	(iii) $\log_e(\cos x)$	2
b)	Evaluate $\int_0^{\frac{\pi}{6}} \cos 2x \ dx$	2
c)	Find:	
	(i) $\int \sqrt{x} dx$	2
	(ii) $\int 2x^2 e^{x^3} dx$	2

Question 3 – (12 marks)

Marks

a)

The diagram shows two points P(2,3) and Q(1,6) on the number plane. Copy the diagram into your answer booklet.

(i) Find the coordinates of M the midpoint of PQ.

1

(ii) Show that the equation of the perpendicular bisector of PQ is x - 3y + 12 = 0

2

(iii) Find the coordinates of the point R that lies on the y-axis and is equidistant from P and Q.

1

(iv) The point S lies on the intersection of the line y=6 and the perpendicular bisector, x-3y+12=0. Find the coordinates of S and mark the position of S on your diagram.

2

(v) Find the area of the triangle *PQS*.

2

b) Differentiate the following:

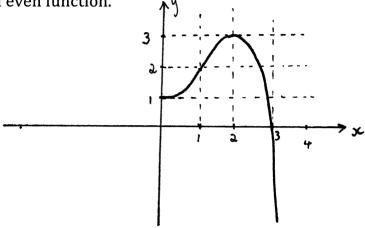
(i)
$$y = x \sin 3x$$

2

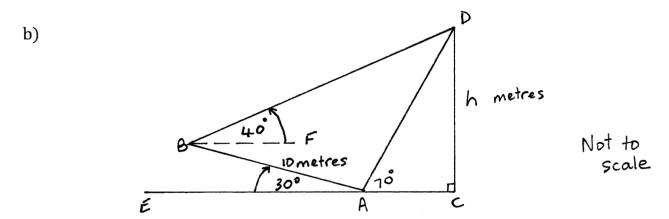
(ii)
$$y = \frac{\ln x}{x^2}$$

Question 4 – (12 marks)

Marks


2

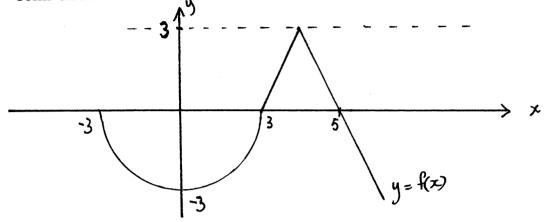
4


2

2

a) The following diagram shows the graph of y = f(x) for $x \ge 0$. It is known that f(x) is an even function.

- (i) Copy the diagram into your answer booklet and complete the graph for x < 0.
- (ii) On a separate diagram sketch a graph of y = f'(x)


The top of a vertical tower CD is observed at an angle of elevation 70° from A. After walking 10 metres up a ramp AB, inclined at an angle of 30° to the horizontal, the top of the tower is now observed at an angle of elevation of 40° .

- (i) Find, with reasons the size of $\angle ABD$, and of $\angle BDA$.
- (ii) Find the length of *AD*.
- (iii) Hence find the height of the tower correct to one decimal place.

Question 5 - (12 marks)

Marks

a) The graph of a function y = f(x) consists of two straight line sections and a semi-circle as shown.

Find the exact value of $\int_0^5 f(x) dx$

2

b) Let $\log_a 2 = x$ and $\log_a 3 = y$

Find an expression for $\log_a 24$ in terms of x and y.

2

2

c) Evaluate

$$\sum_{n=3}^{8} (2n^2 - 3)$$

d) Find:

(i)
$$\int_{1}^{4} x \sqrt{x} \ dx$$

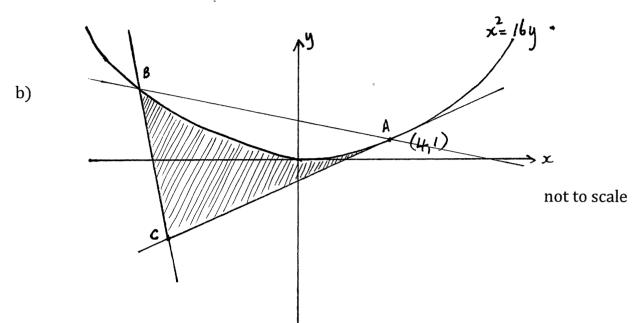
2

(ii)
$$\int \frac{5x^2}{x^3+1} \ dx$$

2

(iii)
$$\int_0^2 e^x + e^{-x} dx$$

Question 6 - (12 marks)

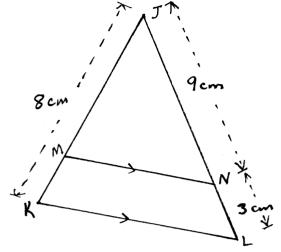

Marks

a) Solve the following equation for x

3

2

$$e^{2x} + 5e^x - 14 = 0$$


The diagram shows the graph of the parabola $x^2 = 16y$. The points A(4,1) and B(-8,4) are on the parabola, and C is the point where the tangent to the parabola at A intersects the directrix.

- (i) Write down the equation of the directrix of the parabola $x^2 = 16y$.
- (ii) Find the equation of the tangent to the parabola of *A*.
- (iii) Show that C is the point (-6, -4).
- (iv) Given that the equation of AB is $y = 2 \frac{x}{4}$
 - (α) Find the perpendicular distance of C to the line AB.
 - (β) Find the area bounded by the line *AB* and the parabola $x^2 = 16y$.
- (v) Hence or otherwise find the shaded area bounded by the parabola, the tangent at *A* and the line *BC*.

Question 7 - (12 marks)

Marks

a)

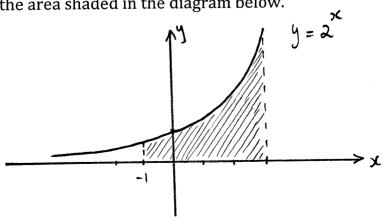
In the diagram triangle JKL is shown $MN \parallel KL$, JK = 8 cm, JN = 9 cm and NL = 3 cm.

(i) Prove that ΔJMN is similar to ΔJKL .

2

(ii) Find the length of MK.

2


b) Consider the function $y = 2^x$.

x	-1	0	1	2	3
2 ^x					

(i) Copy and complete the above table in your writing booklet.

1

(ii) Using Simpson's Rule with these five function values, find an estimate for the area shaded in the diagram below.

Question 7 (cont'd)			Marks
c)	7, w	article is moving in a straight line according to the formula $x = t^2 - 2t + t$ where t is time in seconds, and t is the displacement from the origin t detres. Find:	
	(i)	the initial displacement of the particle.	1
	(ii)	the time when the particle is stationary.	2
	(iii)	the total distance travelled by the particle in the first 4 seconds	2

Question 8 – (12 marks)			Marks
a)	(i)	Write down the discriminant of $3x^2 + 2x + k$.	1
	(ii)	For what values of k does $3x^2 + 2x + k = 0$ have real roots?	1
b)	After prev heig	ll is dropped from a height of 3 metres onto a hard floor and bounces. reach bounce, the maximum height reached by the ball is 80% of the rious maximum height. Thus, after it first hits the floor it reaches a ht of 2.4 metres before falling again and after the second bounce, it hes a height of 1.92 metres before falling again.	
	(i)	What is the maximum height reached on the third bounce?	1
	(ii)	What kind of sequence is formed by the successive maximum heights?	1
	(iii)	What is the total distance travelled by the ball from the time it was first dropped until it eventually comes to rest on the floor?	2
c)	(i)	Sketch the graph of $y = x^2 - 6$ and label all intercepts with the axes.	2
	(ii)	On the same set of axes, carefully sketch the graph of $y = x $	1
	(iii)	Find the x coordinates of the two points where the graphs intersect.	2
	(iv)	Hence solve the inequality $x^2 - 6 \le x $	1

Question 9 - (12 marks)

Marks

- a) Penny is saving for an overseas trip. At the beginning of each month she deposits \$400 into a bank account which pays 6% p.a. calculated monthly.
 - (i) How much will she hve after 2 years?

2

(ii) Penny actually needed \$16 000 for her trip. How much should she have deposited each month into this account for her to have reached her goal in 2 years?

2

- b) Given $y = 2 \cos 3x$ write down
 - (i) the amplitude of this graph.

1

(ii) the period.

1

(iii) sketch the graph for $0 \le x \le 2\pi$.

2

c) (i) Show that the volume of the solid formed when $y = \tan 2x$ is rotated about the x-axis between x = 0 and $x = \frac{\pi}{6}$ is given by

2

$$V = \pi \int_0^{\frac{\pi}{6}} (\sec^2 2x - 1) \ dx$$

(ii) Find the exact volume of the solid.

Question 10 - (12 marks)

Marks

- For the parabola $(x + 3)^2 = 4y 14$ find the following: a)
 - the vertex. (i)

1

(ii) the focus.

2

(iii) the equation of the directrix.

1

A cam is formed with a cross-section as shown in the figure. b)

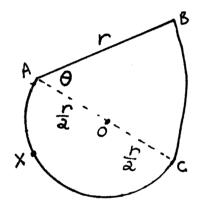


figure not to scale

The cross-section consists of a semicircle *AXC*, centre O and radius $\frac{r}{2}$, and a sector *ABC* of radius r and centre A and angle θ .

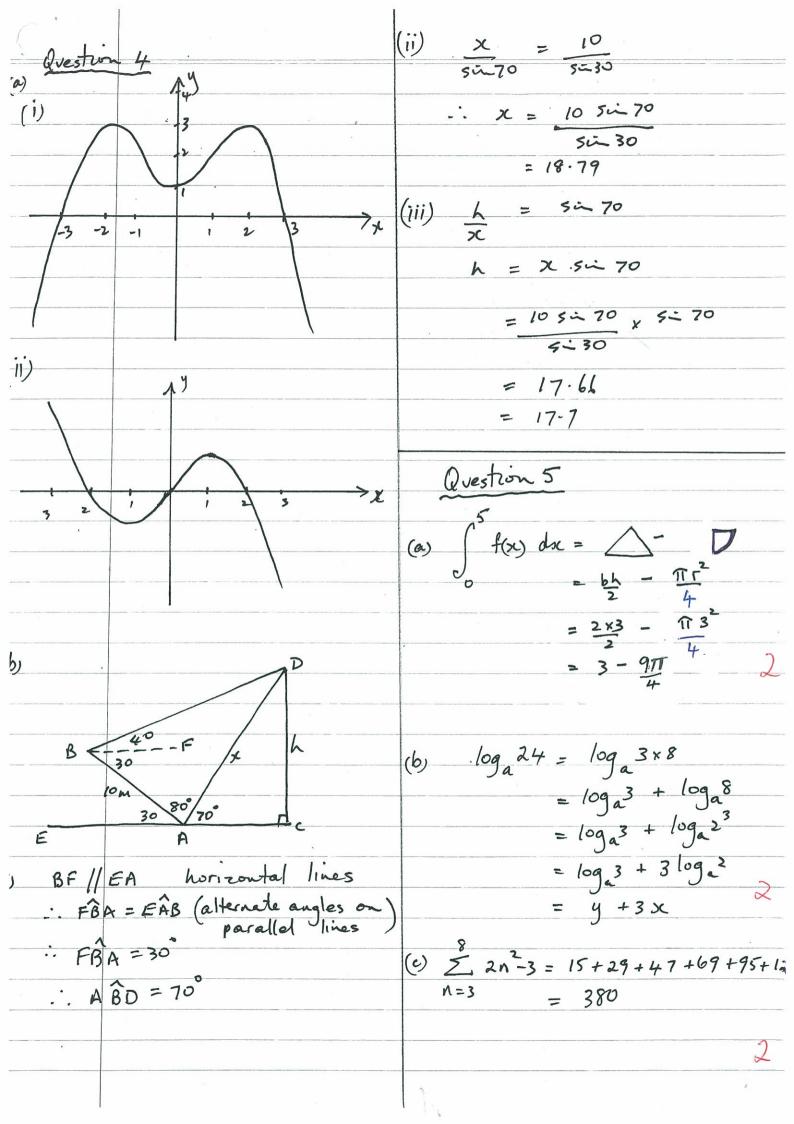
What is the perimeter (P) of the cam ABCX in terms of r and θ ?

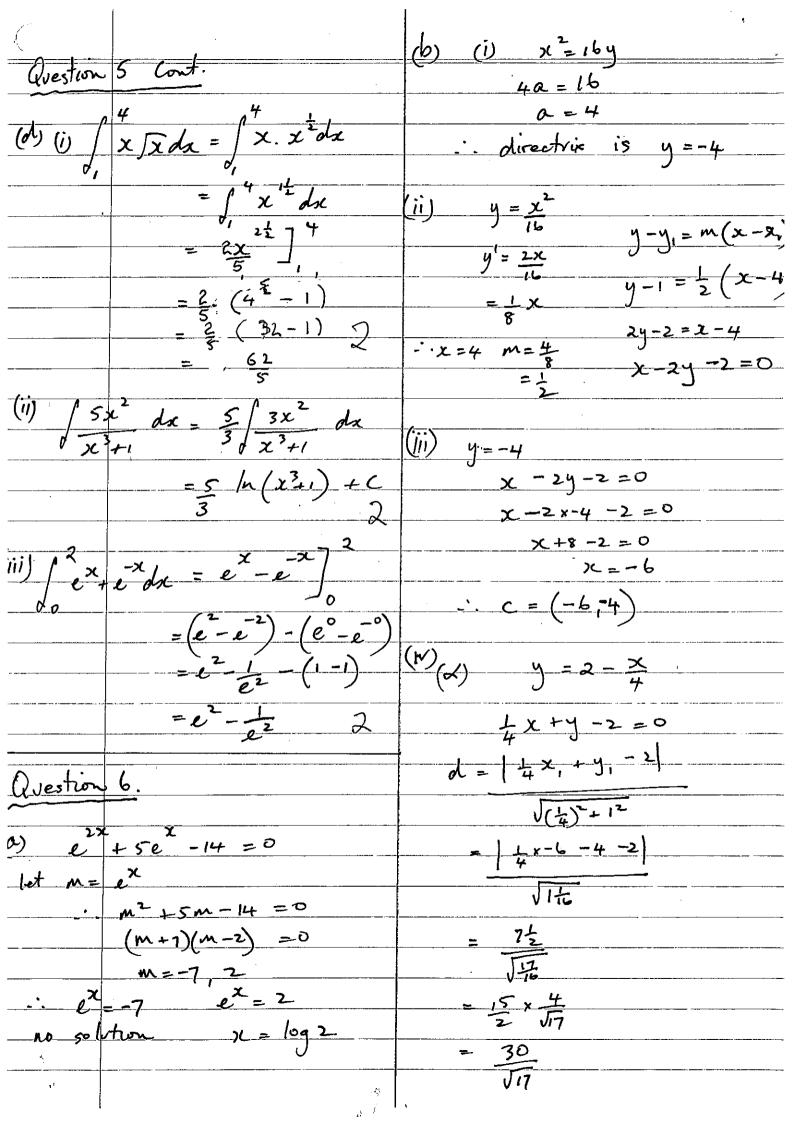
3

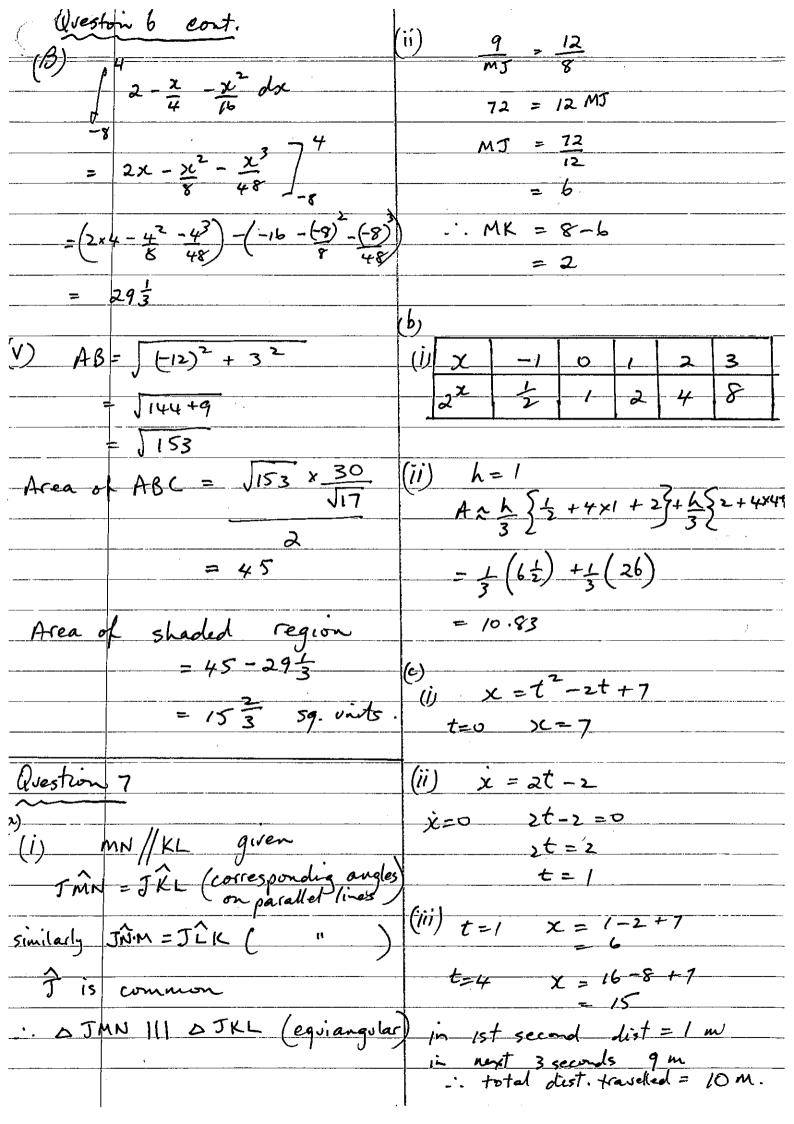
2

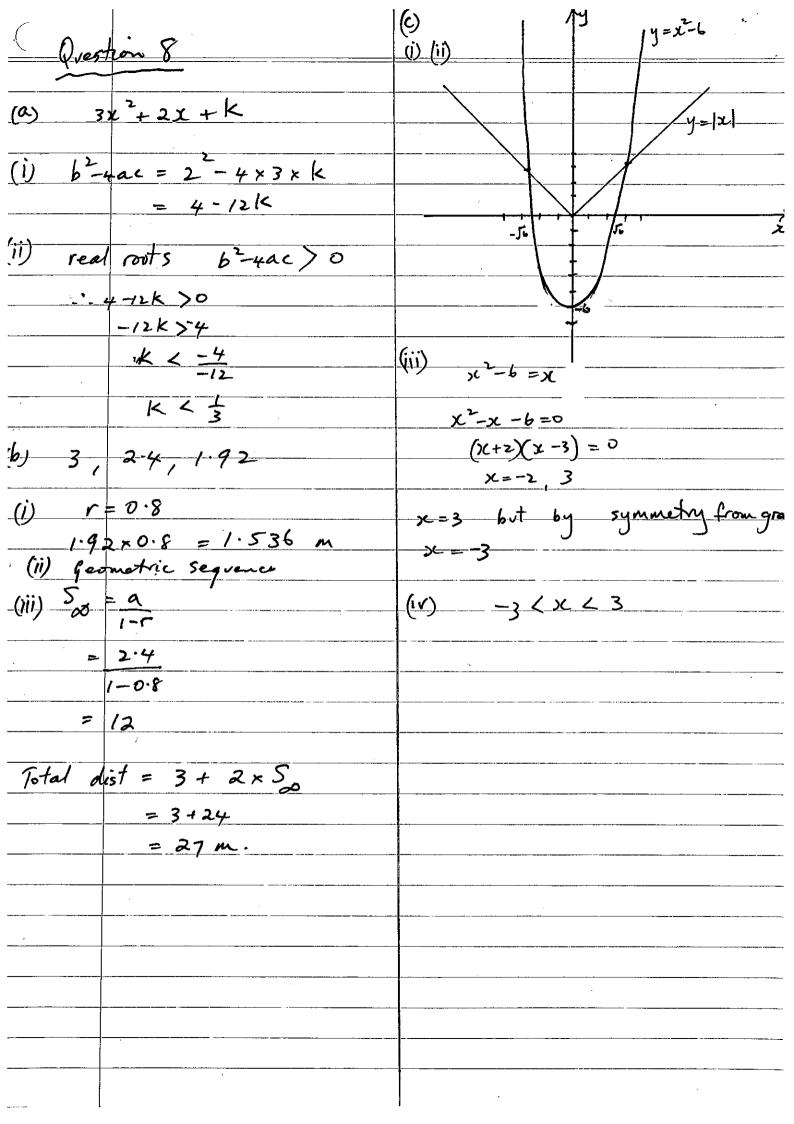
3

(ii) If the area of the cross section of the cam is 1 square unit, by first finding θ show that the perimeter *P* is given by


$$P = \frac{2}{r} + r \left(1 + \frac{\pi}{4} \right)$$


(iii) Show that the least perimeter occurs when $r^2 = \frac{8}{\pi + 4}$ and calculate the value of θ when the perimeter is least.


Solutions - Mathematics Trial 2010


46	JOIVIIONS - Main	demontes III will
Quest	$\frac{2001}{9(3)} + 9(2) = 2^{3} + 1 - 2^{2}$ = 5	Question 2.
(a)	$q(3) + q(2) = 2^{3} + 1 - 2^{2}$	(a) (i) 14 = (1-5x)
	= 5	$y' = 5(1-5x)^{4} \times -5$
		= -25(1-5x) ⁴
(b)	$9x^{3}-9=9(x^{3}-1)$	
5.	$= 9(x-1)(x^2+x+1)$	(ii) $y = 3x e^{3x}$
		$y' = 3e^{3x} + 3x \times 3e^{3x}$
(0)	108° = 3TT radians	$= 3e^{3X} + 9xe^{3X}$
	5	$= e^{3x}(3+9x)$
(d)	$\frac{x-5}{3} \times 12 - \frac{x+1}{4} \times 12 = 5 \times 12$	$= 3e^{3x}(1+3x)$
	3 4	(iii) $y = log(cos x)$
	4(x-5)-3(x+1)=60	-sinx
	4x - 20 - 3x - 3 = 60	$y' = \frac{1}{\cos x} \times -\sin x$
	x - 23 = 60	sinx
	X = 83	cos x
<i>(</i> 2)		= -ten X
	(5x-3) < 7	(b) \[\int_{\cos2xdx} = \frac{1}{2} \sin 2x \] \[\frac{1}{6} \]
-7	7 < 5x-3 < 7	= 1 Sin 2 × II - 1 Sin 2;
-	4 2 5 X 2 10	=======================================
	学 < x < 2	
		$= \frac{1}{2} \times \sqrt{3} - 0$
	-1 -4 0 1 2	$= \frac{\sqrt{3}}{4} = 0.433$
ſ	2	(c) i) $\int \int \int$
(b)	$(\sqrt{2} + \sqrt{6}) = 2 + 2\sqrt{12} + 6$	= 2 + C
	= 8 + 2×253	$= \frac{\chi_{12}^{12}}{12} + C$ $= \frac{2}{3} \times 2 + C$
	= 8+4√3	
		(ii) $\int 2x^2 e^{x^3} dx = \frac{2}{3} \int 3x^2 e^{x^3} dx$
		$= \frac{3}{3}e^{\chi^3} + C$


Ovestin 3 $M9 = \sqrt{(6-1/2)^2 + (6-4/2)^2}$ (1,6) 5 (66) $= \sqrt{(4\frac{1}{2})^{2} + (1\frac{1}{2})^{2}}$ (a) M. (12,42) : Area = Jio x J22.5 p (2,3) = 15 sq. units. (i) y=xsix y'=1x5ix + xx cosx = 5ix + x cosx (i) $M = (\frac{1+2}{2}, \frac{3+6}{2})$ (ii) $y = \ln x$ $= -\frac{3}{7}$ $- \cdot M_1 = -3$ $M_2 = \frac{3}{3}$ $y' = \frac{x^2 \times x}{x} - 2x / nx$ y-y= m(x-x,) y-4/2 = \frac{1}{3} (22-1/2) $= \frac{x - 2x \ln x}{x^4}$ $3y - 13\frac{1}{2} = x - 1\frac{1}{2}$ $= \frac{\chi(1-2\ln \chi)}{\chi^4 \chi^3}$ (v) y=6 x-3y+12=0X-18 +12 =0 x = 6() $PQ = \sqrt{(2-1)^2 + (3-6)^2}$ $=\sqrt{1^2+(-3)^2}$

